S N	SPECIFIC OBJECTIVE S	TIM E	CONTENT	TEACHER 'S ACTIVITY	LEARNER 'S ACTIVITY	EVALUATI ON
0	0					
1	Review the anatomy & physiology of	10 min	ANATOMY & PHYSIOLOGY OF THE RESPIRATORY SYSTEM:	explain the anatomy &	Listening	List out the functions of respiratory
	the respiratory		The respiratory system is situated in the thorax, and is responsible for gaseous	physiology		system
	system		exchange between the circulatory system and the outside world. Air is taken	of the		
			in via the upper airways (the nasal cavity, pharynx and larynx) through the	respiratory		
			lower airways (trachea, primary bronchi and bronchial tree) and into the small	system with		
			bronchioles and alveoli within the lung tissue.	use of LCD		
			The lungs are divided into <i>lobes</i> ; The left lung is composed of the upper lobe,			
			the lower lobe and the lingula (a small remnant next to the apex of the heart),			
			the right lung is composed of the upper, the middle and the lower lobes.			
			Mechanics of Breathing			
			To take a breath in, the external intercostals muscles contract, moving the			
			ribcage up and out. The <i>diaphragm</i> moves down at the same time, creating			
			negative pressure within the thorax. The lungs are held to the thoracic wall by			
			the pleural membranes, and so expand outwards as well. This creates			
			negative pressure within the lungs, and so air rushes in through the upper and			

lower airways.		
Expiration is mainly due to the natural elasticity of the lungs, which tend to		
collapse if they are not held against the thoracic wall. This is the mechanism		
behind lung collapse if there is air in the pleural space (<i>pneumothorax</i>).		
Physiology of Gas Exchange		
Each branch of the bronchial tree eventually sub-divides to form very		
narrow terminal bronchioles, which terminate in the alveoli. There are many		
millions of alveoli in each lung, and these are the areas responsible for		
gaseous exchange, presenting a massive surface area for exchange to occur		
over.		
Each alveolus is very closely associated with a network of capillaries		
containing deoxygenated blood from the pulmonary artery. The capillary and		
alveolar walls are very thin, allowing rapid exchange of gases by passive		
diffusion along concentration gradients. CO2 moves into the alveolus as the		
concentration is much lower in the alveolus than in the blood, and		
O_2 moves <i>out of</i> the alveolus as the continuous flow of blood through the		
capillaries prevents saturation of the blood with O ₂ and allows maximal		
transfer across the membrane.		

contraction across the myocardium. This depolarization and contraction of the heart is controlled by a specialized group of cells localised in the sino-atrial node in the right atrium-the <i>pacemaker cells</i> . 1. These cells generate a rhythmical depolarization, which then spreads out over the atria to the atrio-ventricular node. 2. The atria then contract, pushing blood into the ventricles. 3. The electrical conduction passes via the Atrio-ventricular node to the bundle of His, which divides into right and left branches and then spreads out from the base of the ventricles across the myocardium. 4. This leads to a 'bottom-up' contraction of the ventricles, forcing blood up and out into the pulmonary artery (right) and aorta (left). 5. The atria then re-fill as the myocardium relaxes.		
 This depolarization and contraction of the heart is controlled by a specialized group of cells localised in the sino-atrial node in the right atrium-the <i>pacemaker cells</i>. 1. These cells generate a rhythmical depolarization, which then spreads out over the atria to the atrio-ventricular node. 2. The atria then contract, pushing blood into the ventricles. 3. The electrical conduction passes via the Atrio-ventricular node to the bundle of His, which divides into right and left branches and then spreads out from the base of the ventricles across the myocardium. 4. This leads to a 'bottom-up' contraction of the ventricles, forcing blood up and out into the pulmonary artery (right) and aorta (left). 5. The atria then re-fill as the myocardium relaxes. 	contraction across the myocardium.	
group of cells localised in the sino-atrial node in the right atrium- the pacemaker cells. 1. These cells generate a rhythmical depolarization, which then spreads out over the atria to the atrio-ventricular node. 2. The atria then contract, pushing blood into the ventricles. 3. The electrical conduction passes via the Atrio-ventricular node to the bundle of His, which divides into right and left branches and then spreads out from the base of the ventricles across the myocardium. 4. This leads to a 'bottom-up' contraction of the ventricles, forcing blood up and out into the pulmonary artery (right) and aorta (left). 5. The atria then re-fill as the myocardium relaxes. The 'squeeze' is called systole and normally lasts for about 250ms. The relaxation period, when the atria and ventricles re-fill, is called diastole; the	This depolarization and contraction of the heart is controlled by a specialized	
the pacemaker cells. 1. These cells generate a rhythmical depolarization, which then spreads out over the atria to the atrio-ventricular node. 2. The atria then contract, pushing blood into the ventricles. 3. The electrical conduction passes via the Atrio-ventricular node to the bundle of His, which divides into right and left branches and then spreads out from the base of the ventricles across the myocardium. 4. This leads to a 'bottom-up' contraction of the ventricles, forcing blood up and out into the pulmonary artery (right) and aorta (left). 5. The atria then re-fill as the myocardium relaxes. The 'squeeze' is called systole and normally lasts for about 250ms. The relaxation period, when the atria and ventricles re-fill, is called diastole; the	group of cells localised in the sino-atrial node in the right atrium-	
 These cells generate a rhythmical depolarization, which then spreads out over the atria to the atrio-ventricular node. The atria then contract, pushing blood into the ventricles. The electrical conduction passes via the Atrio-ventricular node to the bundle of His, which divides into right and left branches and then spreads out from the base of the ventricles across the myocardium. This leads to a 'bottom-up' contraction of the ventricles, forcing blood up and out into the pulmonary artery (right) and aorta (left). The atria then re-fill as the myocardium relaxes. 	the pacemaker cells.	
out over the atria to the atrio-ventricular node. 2. The atria then contract, pushing blood into the ventricles. 3. The electrical conduction passes via the Atrio-ventricular node to the bundle of His, which divides into right and left branches and then spreads out from the base of the ventricles across the myocardium. 4. This leads to a 'bottom-up' contraction of the ventricles, forcing blood up and out into the pulmonary artery (right) and aorta (left). 5. The atria then re-fill as the myocardium relaxes. The 'squeeze' is called systole and normally lasts for about 250ms. The relaxation period, when the atria and ventricles re-fill, is called diastole; the	1. These cells generate a rhythmical depolarization, which then spreads	
 2. The atria then contract, pushing blood into the ventricles. 3. The electrical conduction passes via the Atrio-ventricular node to the bundle of His, which divides into right and left branches and then spreads out from the base of the ventricles across the myocardium. 4. This leads to a 'bottom-up' contraction of the ventricles, forcing blood up and out into the pulmonary artery (right) and aorta (left). 5. The atria then re-fill as the myocardium relaxes. 	out over the atria to the atrio-ventricular node.	
3. The electrical conduction passes via the Atrio-ventricular node to the bundle of His, which divides into right and left branches and then spreads out from the base of the ventricles across the myocardium. 4. This leads to a 'bottom-up' contraction of the ventricles, forcing blood up and out into the pulmonary artery (right) and aorta (left). 5. The atria then re-fill as the myocardium relaxes. The 'squeeze' is called systole and normally lasts for about 250ms. The 	2. The atria then contract, pushing blood into the ventricles.	
the bundle of His, which divides into right and left branches and then spreads out from the base of the ventricles across the myocardium. 4. This leads to a 'bottom-up' contraction of the ventricles, forcing blood up and out into the pulmonary artery (right) and aorta (left). 5. The atria then re-fill as the myocardium relaxes. The 'squeeze' is called systole and normally lasts for about 250ms. The relaxation period, when the atria and ventricles re-fill, is called diastole ; the 1	3. The electrical conduction passes via the Atrio-ventricular node to	
spreads out from the base of the ventricles across the myocardium. 4. This leads to a 'bottom-up' contraction of the ventricles, forcing blood up and out into the pulmonary artery (right) and aorta (left). 5. The atria then re-fill as the myocardium relaxes. The 'squeeze' is called systole and normally lasts for about 250ms. The relaxation period, when the atria and ventricles re-fill, is called diastole; the	the bundle of His, which divides into right and left branches and then	
4. This leads to a 'bottom-up' contraction of the ventricles, forcing blood up and out into the pulmonary artery (right) and aorta (left). 5. The atria then re-fill as the myocardium relaxes. The 'squeeze' is called systole and normally lasts for about 250ms. The relaxation period, when the atria and ventricles re-fill, is called diastole; the	spreads out from the base of the ventricles across the myocardium.	
blood up and out into the pulmonary artery (right) and aorta (left). 5. The atria then re-fill as the myocardium relaxes. The 'squeeze' is called systole and normally lasts for about 250ms. The relaxation period, when the atria and ventricles re-fill, is called diastole ; the	4. This leads to a 'bottom-up' contraction of the ventricles, forcing	
5. The atria then re-fill as the myocardium relaxes. The 'squeeze' is called systole and normally lasts for about 250ms. The relaxation period, when the atria and ventricles re-fill, is called diastole; the	blood up and out into the pulmonary artery (right) and aorta (left).	
The 'squeeze' is called systole and normally lasts for about 250ms. The relaxation period, when the atria and ventricles re-fill, is called diastole ; the	5. The atria then re-fill as the myocardium relaxes.	
The 'squeeze' is called systole and normally lasts for about 250ms. The relaxation period, when the atria and ventricles re-fill, is called diastole ; the		
relaxation period, when the atria and ventricles re-fill, is called diastole ; the	The 'squeeze' is called systole and normally lasts for about 250ms. The	
	relaxation period, when the atria and ventricles re-fill, is called diastole ; the	
time given for diastole depends on the heart rate.	time given for diastole depends on the heart rate.	

			Oxygenation is the delivery of oxygen to the body tissues and			
			cells.			
2	Define oxygenation	1min	FACTORS AFFECTING OXYGENATION: Adequate oxygenation is influenced by many factors including: age, environmental and life style factors and disease process•		Listening	Define the oxygenation
			 Physiological factors Decreased oxygen carrying capacity-anemia Hypovolaemia-shock and sever dehydration 	explain the definition with use of		
3	list out the factors affecting oxygenation	5min	Decreased oxygen carrying capacity Increased metabolic rate Conditions affecting chest wall movements Pregnancy Obesity Musculoskeletal abnormalities Trauma, neuromuscular diseases	black board explain the factors affecting oxygenation with use of chart	Listening and asking doubts	list out the some factors affecting oxygenation
			2. Age(developmental factors): older adults may exhibit a barrel chest and require increased effort to expand the lungs. Older adults are also more susceptible to respiratory infections because of decreased activity of cilia which normally are effective defense mechanism.			
			3. Environmental and lifestyle factors:			

4	enlist the alteration in oxygenation	5min	Environmental and lifestyle factors can significantly affect clients oxygenation status. Clients who are exposed to dust, animal dander, chemicals in the home or workplace are at increased risk for alteration in oxygen Individuals who experience significant physical or emotional stress or who are obese or underweight are also subject to changes in oxygenation status Disease process: Diseases that may affect oxygenation include: obstructive pulmonary disease, atherosclerosis heart failure, anaemia Alteration in respiratory function: Hypoventilation-inadequate alveolar ventilation Hyperventilation- more alveolar ventilation Hypoxia-inadequate tissue oxygenation at cellular level Alteration in cardiac function: Disturbances in conduction Altered cardiac output-left or right side heart failure Impaired valular function Myocardial ischemia and myocardial infraction	explain the alteration in oxygenation with use of black board	Listening	Say some alteration in oxygenation
			ALTERATION IN OXYGENATION: Anemia: Hemoglobin transports 99% of oxygen to tissues Decreased Hb			

			production, increased RBC destruction, blood loss			
			Toxic inhalation: decreased binding sites			
			Carbon monoxide: Increased Metabolic Rate, increased oxygen demand			
			-Exercise, pregnancy, fever(Prolonged or high fever)			
					Listening	List out few
5	enumerate	5min	Aging: Structural changes chest wall compliance, elastic recoil,		and asking	important
	the indication for		functioning alveoli. Defense mechanisms, cilia function, cough force,		doubts	indication for
	oxygen		immunity	explain the		therapy
	therapy			for oxygen		
			OTHER RESPIRATORY RISK FACTORS:	therapy		
			•Increased age	with use of poster		
			•Nutrition's			
			•Cigarette smoking			
			•Substance abuse			
			•Exercise			
			•Environmental pollution			
			•Stress/anxiety			
			Assessment of the patients			
			1. Identify the recurrent and assessment of signs and symptoms			

MRS.SANDHANALAKSHMI LECTURER

ICON

	1			1	r	
6	list out the types of oxygen therapy	10 Min	associated with impaired oxygenation 2. Determine the risk factors 3. Check the eyes 4. Pain 5. Fatigue 6. Dyspnoea, Cough, wheezing 7. Environmental exposure 8. Smoking 9. Respiratory infection 10. Allergies 11. Health risks and medications 12. Physical examination Inspection-head to toe observation	explain the types of oxygen therapy with LCD	Listening	list out the various types of oxygen therapy
6	list out the types of oxygen therapy	10 Min	 4. Pain 5. Fatigue 6. Dyspnoea, Cough, wheezing 7. Environmental exposure 8. Smoking 9. Respiratory infection 10. Allergies 11. Health risks and medications 12. Physical examination Inspection-head to toe observation Palpation-tenderness, tactile fremitus, thrills, quality of pulse, temperature, capillary refilling, edema Percussion- abnormal fluid or air 	explain the types of oxygen therapy with LCD	Listening	list out the various types of oxygen therapy
			Auscultation-heart and lung sounds OXYGEN THERAPY:			
			A method by which oxygen is supplemented at higher percentage than what is available in atmospheric air			
			Purpose			
			1. To relieve dyspnea			
			2. To reduce or prevent hypoxia or hypoxemia			
			3. To alleviate anxiety associated with struggle to breath			
L	1		1			l

	1	1				1
			Sources of oxygenation			
			1.Central supply			
			2.Oxygen cylinder			
			INDICATION FOR OXYGEN THERAPY:			
			Any individual with one or more of the following:			
			• Peri and post cardiac or respiratory arrest			
	explain the various methods of		 Hypoxia - diminished blood oxygen levels (oxygen saturation levels of <92%) 			
7		15	• Acute and chronic hypoxemia (PaO ₂ < 65mmHg, SaO ₂ < 92%) signs and symptoms of shock		Listening	Explain any
		ads of min	of min •	• Low cardiac output and metabolic acidosis (HCO ₃ < 18mmol/l)		
	oxygen administration		• Chronic type two respiratory failure (hypoxia and hypercapnia	explain the various methods of		administration
	udininistration		• Despite a lack of supportive data, oxygen is also administered in the following conditions:			
			Dyspnoea without hypoxemia	administrati		
		 Post-operatively, dependent on in Treatment of pneumothorax 	• Post-operatively, dependent on instruction from surgical team	on with LCD		
			• Treatment of pneumothorax			
			• Assessment process - difficulty to obtain arterial blood samples			
			• Clinical conditions in infancy are exclusive although overlaps exist in adolescents			

	TYPES OF OXYGEN THERAPY:		
	High concentration oxygen therapy		
	Up to 60 per cent oxygen results in the reduced risk of hypoventilation and retention of carbon dioxide. High concentration oxygen therapy can have detrimental effects on the respiratory system,		
	Complication: particularly after prolonged usage, and can lead to respiratory distress due to absorption atelectasis (collapse of alveolus due to blockage).		
	Low concentration oxygen therapy (controlled oxygen therapy)		
	Used to correct hypoxaemia by using an accurate amount of oxygen.		
	Long term oxygen therapy (LTOT)		
	The provision of continuous oxygen therapy for patients with chronic hypoxaemia. Requirements vary between 24-hour dependency and dependency during periods of sleep. Principally aims to improve symptoms and prevent harm from chronic hypoxaemia.		
	Chronic hypoxaemia include those with:		
	Chronic lung disease		
	Congenital heart disease with pulmonary hypertension		
	Pulmonary hypertension secondary to respiratory disease		
	Interstitial lung disease		
	Bronchiolitis		

Cystic fibrosis and other causes of severe bronchiectasis	
Obstructive sleep apnoea and other sleep related disorders	
Assessment:	
Wherever possible, a set of baseline observations should always be obtained. This should be documented appropriately on relevant.	
METHODS OF OXYGEN ADMINISTRATION:	
The selection of an appropriate oxygen delivery system must take into account clinical condition, the patient's size, needs and therapeutic goals	
High concentration oxygen is usually delivered via incubator or humidified head box	
• For concentrations below 50 per cent, oxygen can be delivered via nasal cannula	
• Face masks	
• Re-breathe mask	
Humidified oxygen	
• wafting	
via nebulisation	
	1

	• tracheostomy		
	nasal cannula		
	• via a ventilation circuit		
	Face mask:		
	Supplied in child sizes, but has been found that children do not always tolerate them. There are two types of face masks dependant on the condition of the child		
	1. Simple oxygen mask (variable flow masks)		
	Vents in the mask allow for the dilution of oxygen. High concentrations of oxygen can be safely administered. If low concentration of oxygen (below four litres) required, then there is a risk of a carbon dioxide build up.		
	2. High concentration oxygen masks		
	Used for emergency situations due to a large reservoir that allows oxygen only to be breathed in by the patients. This prevents the inhalation of mixed gases. The approximate oxygen received is 99 per cent		
	Humidified:		
	This can be delivered via a face mask or head box, dependent upon patients age/co-operation. Humidified oxygen should be utilised when high percentages of oxygen are required for prolonged periods, and in those with chronic respiratory illness, to prevent drying of the mucosa and secretions.		
	Nasal cannula oxygen does not need to be humidified		

Wafting:	
When conventional delivery methods are not tolerated, wafting of oxygen via a face mask has been shown to deliver concentrations of 30-40 per cent with 10 litres oxygen per minute, to an area of 35x32cm from top of the mask.	
Wafting via green oxygen tubing has been assessed as appropriate for short term use only, ie whilst feeding.	
Via nebulisation:	
If the patients is oxygen dependant, nebulisers should be delivered via oxygen and not air.	
Tracheostomy:	
Oxygen can be delivered via a tracheostomy mask, Swedish nose or headbox. Consider patients individual needs.	
Nasal cannula:	
Can be used for long-term oxygen use, whilst allowing the patients to vocalise and eat. The concentration is often not controlled, resulting in a low inspiratory oxygen concentration.	
Nasal cannula oxygen does not need to be humidified	
Via a ventilation circuit:	
Accurate measurement of inspired oxygen is difficult and pulse oximetry	
ventilation circuit but always before the humidification unit as oxygen is a	

ICON					
	cold gas that needs to be warmed and humidified.				
	Via an T piece – open ended bag:				
	Used frequently by anaesthetists and experience gives a reliable impression of the state of the lungs. This technique allows manual application of PEEP (positive end-expiratory pressure). It is completely reliant on an effective oxygen source				
	Bag valve mask:				
	Comes in three sizes: 250mls, 500mls and 1,500mls. The smallest one is ineffective even at birth. Two smallest bags have a pressure limiting valve set at 4.41kPa (45cm H ₂ 0) to protect the lungs from barotrauma (damage caused to tissues by a change in pressure inside and outside the body).				

MRS.SANDHANALAKSHMI LECTURER ICON

Subject	: Nursing Foundation II
Unit	: X
Topic	: oxygenation
Hours	: 1 hour
Group	: B Sc (Nursing) II Semester
Venue	: Lecture Hall I, ICON.
Methods of teaching	: Lecture cum discussion and demonstration
AV Aids	: Black board, Chart, Posters, LCD.

GENERAL OBJECTIVE:

MRS.SANDHANALAKSHMI LECTURER ICON

Help the students to acquire adequate knowledge about oxygenation and develop desirable skills and attitude towards various methods oxygenation used in all health care settings and their day to day nursing practice.

SPECIFIC OBJECTIVES:

At the end of the class, the students are able to

- 1) review the anatomy & physiology of the respiratory system
- 2) define oxygenation
- 3) list out the factors affecting oxygenation
- 4) enlist the alteration in oxygenation
- 5) enumerate the indication for oxygen therapy
- 6) list out the types of oxygen therapy
- 7) explain the various methods of oxygen administration

MRS.SANDHANALAKSHMI LECTURER ICON

REFERENCES:

1. Sharma Thomas (2013), "Potter and Perry's Fundamentals of Nursing" 1st South Asian Edition, Elsevier Publication, 461-469.

2. Taylor Lillis (2012), "Fundamentals of Nursing, The art and science of Nursing care", seventh edition, LWW Publication, 558-613.