
MRS.MALAR LECTURER ICON

Oxygenation

Respiratory System

Process of Breathing

- Inspiration Air flows into lungs
- Expiration Air flows out of lungs

Normal Oxygenation Process

Inspiration

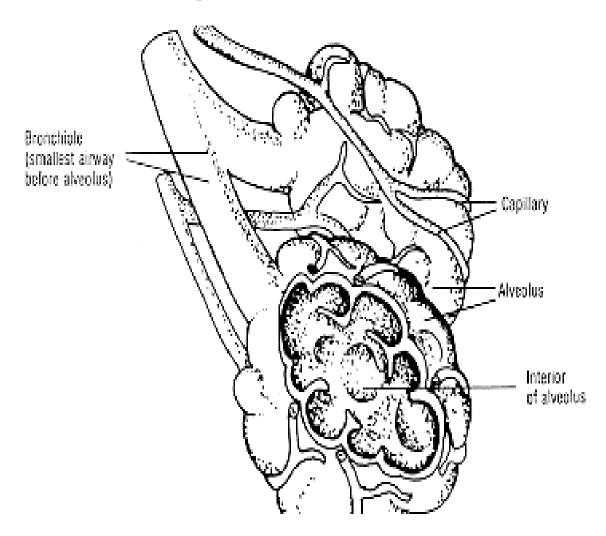
- Diaphragm and intercostal muscles contract
- Thoracic cavity size increases
- Volume of lungs increases
- Intrapulmonary pressure decreases
- Air rushes into the lungs to equalize pressure

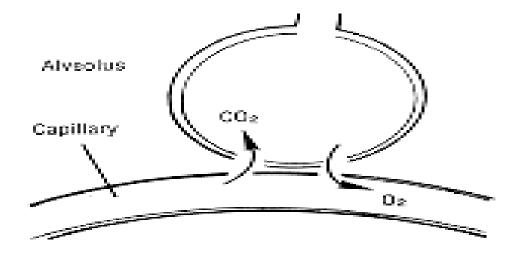
Expiration

- Diaphragm and intercostal muscles relax
- Lung volume decreases
- Intrapulmonary pressure rises
- Air is expelled

Gas Exchange

Occurs after the alveoli are ventilated


Pressure differences (**gradient**) on each side of the respiratory membranes affect diffusion


- Alveoli:
- ❖ PO2 100mmHg
- ❖ PCO2 40mmHg

- Venous blood:
- ❖ PO2 60mmHg
- ❖ PCO2 45mmHg
- O2 diffusion from alveoli pulmonary blood vessels
- CO2 diffusion from pulmonary blood vessels 🛘 alveoli

Adequate O2 Balance

Maintenance of adequate O2 balance <u>Gas Exchange</u>

Oxygen Transport

- Transported from the lungs to the tissues
- 97% of O₂ combines with RBC Hgb hemoglobin carried to tissues
- Remaining O₂ is dissolved and transported in plasma and cells (PO₂)

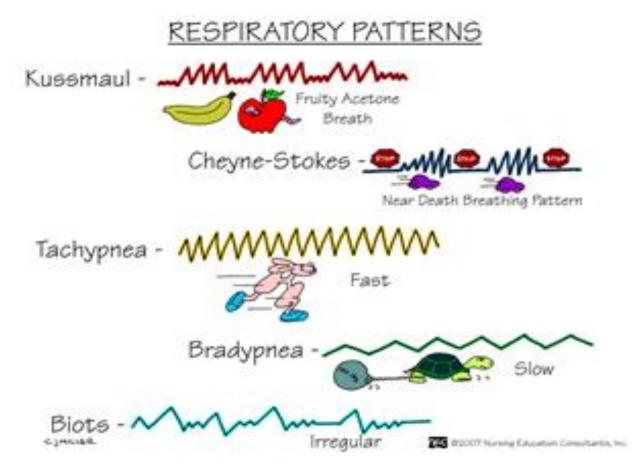
 \square ox

Carbon Dioxide Transport

- Must be transported from tissues 🛘 lungs
- Continually produced in the process of cell metabolism
- 65% carried inside RBCs as bicarbonate (HCO₃⁻)
- 30% combines with Hgb □ car hemoglobin
- 5% transported in plasma as carbonic acid (H₂CO₃

Common Manifestations of Impaired Respiratory Function

- Hypoxia
- **❖** Altered breathing patterns
- Obstructed or partially obstructed airway


Hypoxia

- ❖ Condition of insufficient oxygen anywhere in the body
- Rapid pulse
- * Rapid, shallow respirations and dyspnea

- Increased restlessness or lightheadedness
- Flaring of nares
- ❖ Sub sternal or intercostal retractions
- Cyanosis

Abnormal Respiratory Patterns

- ❖ Tachypnea (rapid rate)
- ❖ Bradypnea (abnormally slow rate)
- **❖** Apnea (cessation of breathing)
- ❖ Kussmaul's breathing
- Cheyne-Stokes respirations
- **❖** Biot's respirations

Nursing Measures to Promote Respiratory Function

- Ensure a patent airway
- Positioning

- Encourage deep breathing, coughing
- Ensure adequate hydration

Nursing Responsibilities

Physical Assessment:

- ❖ Lung auscultation and breathing pattern
- **❖** Abdominal assessment
- Urine output
- ❖ Skin and mucous membranes
- **♦** Heart sounds
- Circulation
- **❖** Edema
- **❖** DVT

Lung sounds:

- Diminished or absent
- Crackles course and fine
- Discontinuous course bubbling
- ❖ Fine crackling sound at the middle or end of inspiration
- Rhonchi
- ❖ A continuous sonorous sound
- Wheezes
- ❖ High pitch musical sounds
- ❖ Pleural friction rub
- ❖ Grating rubbing, sound

What is meaning of O2 therapy:

- ❖ Oxygen therapy is the administration of oxygen at a concentration of pressure greater than that found in the environmental atmosphere
- ❖ The air that we breathe contain approximately 21% oxygen
- * The heart relies on oxygen to pump blood.

Classification of Oxygen DeliverySystems:

Low flow systems

- Contribute partially to inspired gas client breathes
- ❖ Ex: nasal cannula, simple mask, non-re breather mask, Partial rebreather mask

High flow systems

- Deliver specific and constant percent of oxygen independent of client's breathing
- ❖ Ex: Venturi mask,track collar, T-piece

INDICATIONS

- Principally Hypoxemia
- ❖ Poor ventilator effort post operative
- **❖** Sedation
- Confusion
- ❖ Poor oxygen delivery- shock
- **❖** Severe anemia
- ❖ Heart failure
- **❖** Severe trauma
- **❖** Acute illness
- **❖** Poisoning

Methods of oxygen administration

Nasal cannula/catheter method:

Definition:

Method by which oxygen is supplemented at higher percentage than, what is available is atmosphere.

Purpose:

- **❖** To relive dyspnea
- ❖ To reduce or prevent hypoxemia and hypoxia.
- ❖ To alleviate anxiety associated with struggle to breathe.

Source of oxygen:

Therapeutic oxygen is available from two sources.

- ❖ Piped oxygen (central supply)
- **♦** Oxygen cylinders

Equipment:

- ❖ Oxygen connecting tube
- ❖ Flow meter or regular
- ❖ Humidifier filled with water distilled/ demineralized water
- ❖ No smoking sign board
- Oxygen source
- ❖ Tray with nasal catheter of appropriate size
- ❖ Water soluble lubricating jelly
- Gauze pieces
- **❖** Adhesive tape and scissors

General instruction

- ❖ Nasal catheter to be changed every 6-8 hours.
- ❖ Catheter to be inserted alternatively in each nostril
- Humidifier jar to be kept filled at all times.
- ❖ Patient nostril to be assessed for skin break down ,6-8 hours
- Relief of symptoms associated it hypoxia to be assessed periodically
- ❖ Pulse and respiration to be monitored and recorded in nurse's record.

Procedure:

- Check doctors order
- Assemble the equipment
- Attach flow meter to wall outlet or to oxygen cylinder
- Attach humidifier to flow meter
- Attach the connecting tubing to humidifier and catheter
- Test flow setting flow meter at 2-31/mt and insert tip of catheter into the glass of water
- Measure length of catheter by placing for insertion one end of catheter from tip of patient nose, horizontally to ear lobe and mark accordingly
- Lubricate tip of catheter with water soluble jelly
- Hyper extend head of the patient .clean nostril with saline swab.
 Introduce nasal catheter slowly into nostril to marked distance.
 Cannula issued, placed tip into patient nose
- Ensure catheter is positioned at entrance of oropharynx by
 - Having patient open mouth
 - Depressing tongue with visualizing catheter
- Initiateflow of oxygen about 2-4l/mt and then adjust to prescribed rate
- Secure nasal catheter to patients face, either to side of nose and cheek or from tip of nose and fore head
- Maintain suffient slack in oxygen tubing. Secure connecting tube to bed
- Record time method, flow rate and patients comfort with oxygen use.

Method	Amount Delivered F1o2 (Fraction Inspired Oxygen)	Priority Nursing Interventions	Advantages	Disadvantages
nasal Cannula	Low flow 24-44 % 1 L\min=24% 2 L\min=28% 3 L\min=32% 4 L\min=36% 5 L\min=40% 6 L\min=44%	 Check frequently that both prongs are in clients nares Never deliver more than 2-3 L\min to client with chronic lung disease 	 Client able to talk and eat with oxygen in place Easily used in home setting 	 may cause irritation to the nasal and pharyngeal mucosa if oxygen flow rates are above 6 liters/minute Variable FIO2

Face maskPrepared by

R.SUNDARI, BSC (Nursing)

- **❖** The simple Oxygen mask
- ❖ The partial rebreather mask:
- ❖ The non rebreather mask:
- ❖ The venturi mask:

The simple Oxygen mask

- ❖ It delivers 35% to 60% oxygen.
- ❖ A flow rate of 6 to 10 liters per minute.
- Often it is used when an increased delivery of oxygen is needed for short periods
- ♦ (i.e., less than 12 hours).

Equipment:

- Oxygen source
- Flow meter
- **❖** Face mask
- Large bore tubing
- Humidifier
- ❖ No smoking sign board

Procedure:

- * Ensure no source of fire near patient
- ❖ Show mask to mask to patient and explain the procedure

- ❖ Set desired concentration of oxygen and adjust flow rates as prescribed.
- ❖ Place mask on patient, adjust head strap and ensure a tight seal
- **❖** Iniate oxygen flow
- Stay with patients comfort and functioning of equipment frequently
- * Record patient's response to oxygen toxicity.

Method	Amount Delivered F1o2(Fraction Inspired Oxygen)	Priority Nursing Interventions	Advantages	Disadvantages
Simple mask	✓ Low Flow ✓ 6-10 L\min ✓ 35%-60%	 ✓ Monitor client frequently to check placement of the mask. ✓ Support client if claustrophobi a is concern ✓ Secure physician's order to replace mask with nasal cannula during meal time 	✓ Can provide increase d delivery of oxygen for short period of time	 ✓ Tight seal required to deliver higher concentration ✓ Difficult to keep mask in position over nose and mouth ✓ Potential for skin breakdown (pressure, moisture) ✓ Wasting ✓ Uncomfortable for pt while eating or talking ✓ Expensive with nasal tube

DEVICE	FLOW RATE L/min	% OXYGEN	
Nasal cannula	1-6	25-45	
Simple face mask	6-8	40-60	
Partial Rebreather	8-11	50-75	
Non Rebreather	10-15	90 -100	
Venturi Mask	4-8	24-40	

Side effect & complication of oxygen therapy

- Oxygen toxicity
- Retrolental fibroplasia
- Absorption atelectasis

Oxygen toxicity:

- ❖ It is a condition in which ventilator failure
- occurs due to inspiration of a high
- Concentration of oxygen for prolonged period of time.
- ❖ Oxygen concentration greater than 50% over 24 to 48 hours can cause pathological changes in the lungs

Signs and symptoms of oxygen toxicity:

- Non-productive cough.
- Nausea and vomiting.
- Sub sternal chest pain.
- Fatigue.
- Nasal stuffiness.
- Headache.
- Sore throat.
- Hypoventilation.
- Nasal congestion.
- Dyspnea.

Oxygen tent Process of administering oxygen by means

Venture mask

- ❖ It is high flow concentration of oxygen.
- **❖** Oxygen from 40 50%
- ❖ At liters flow of 4 to 15 L/min.

Equipment:

- **♦** Oxygen source
- Flow meter
- ❖ Venture mask for correct concentration
- **♦** Colour code adapter 24%,28%,31%,35%40%,60%
- Humidifier

*